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Abstract—Static noise margin analysis using butterfly curves has 
traditionally played a  leading role in the sizing and optimization 
of  SRAM cell structures. Heightened variability and reduced 
supply voltages  have resulted in increased attention being paid to 
new methods for characterizing dynamic robustness. In this 
work, a technique based on vector field analysis is presented for 
quickly extracting both static and dynamic stability 
characteristics of  arbitrary SRAM topologies. It is shown that the 
traditional  butterfly curve simulation for 6T cells is actually a 
special case of  the proposed method. The proposed technique not 
only allows for standard SNM “smallest-square” measurements, 
but also enables tracing of the state-space separatrix, an 
operation critical  for quantifying dynamic stability. It is 
established via importance sampling that cell characterization 
using a combination of  both separatrix tracing and butterfly 
SNM measurements is  significantly more correlated to cell failure 
rates then using SNM measurements alone. The presented 
technique is  demonstrated to be thousands of  times faster than 
the brute force transient approach and can be implemented with 
widely available, standard design tools.
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I.  INTRODUCTION

Hill and Lohstroh developed the original treatment of logic 
noise margin analysis using butterfly curves in the late 1960s 
and 1970s [1, 2]. Almost two decades later, Seevinck et. al. 
demonstrated a spice compatible simulation technique for 
generating these butterfly-curves specifically for SRAM cells 
that provided a quantitative measure of their stability and 
robustness [3]. This simulation technique has become the de-
facto standard, and over the last 20 or so years,  a variety of 
equivalent methods with additional merits and drawbacks have 
been proposed for making this same stability measurement, for 
example N-curves and unity-gain search [4-6]. Even so, no 
technique has supplanted the butterfly curve as the 
quintessential SRAM metric, a reality evident in literature 
presenting even the most advanced SRAM cells to date [7].

In recent years, increasing attention has been paid to so-
called dynamic stability analysis [8]. The premise is to capture 
transient phenomena of SRAM cell operation that are lost in 
traditional DC static analysis, thus affording the designer more 
relaxed margins during dynamic operations, such as reading 
and writing, and under the constraints of transient parasitics, 
such as coupling and radiation induced noise. Quantifying 
dynamic noise margin generally involves characterizing an 

SRAM cell using a multitude of transient simulations and as 
such, becomes particularly challenging since it must take into 
account external factors including bit-line capacitance, word-
line driver slew, layout dependent coupling, etc.  These in turn 
require one to make assumptions about the overall array 
structure during the cell design phase that can result in 
unnecessary iteration later on.

In this work, a method is presented for capturing and 
quantifying both static and dynamic SRAM characteristics 
without performing any transient simulations or DC 
convergence operations. The technique relies solely on solving 
model equations for predefined steady-state DC conditions,  a 
calculation that can be performed through any number of 
available numerical solvers. Most importantly, the presented 
technique is compatible with any bi-stable SRAM cell structure 
including asymmetric cells and atypical transistor count 
designs such as 5T, 8T, and Portless SRAM.

II. BACKGROUND

It has long been established that the smallest square of the 
butterfly curve, the zero-current separation of the N-curve, and 
the unity-gain separation of a stability analysis are all 
mathematically equivalent methods for measuring the 
traditional static-noise margin (SNM) [4, 9]. For this reason, 
the Seevinck butterfly curve will be the only method 
considered in this work for the static case due to its popularity 
among designers in the SRAM community and its SPICE 
compatible implementation. For the dynamic case, only the 
determination of the state-space separatrix will be considered 
since it is a prerequisite for all the recently proposed dynamic 
analysis techniques.

A.  Traditional Static Noise Margins
The traditional treatment of static noise margin often begins 

with an infinitely long chain of logic gates or inverters. The 
goal is to determine how much noise the input gate can tolerate 
before causing the output gate to change state. From this, a 
mathematical equivalence from the perspective of noise can be 
invoked to relate the infinitely long chain of gates to a 
simplified cross-coupled pair [10]. It is from this equivalence 
that the notion of defining SNM for an SRAM cell was born. 

The well known butterfly curve is a graphical 
representation of the worst-case SNM and can be readily 
simulated in SPICE for a cross-coupled inverter pair as shown 
in Figure 1 using the Seevinck method [3]. In this schematic, U 
is an independent voltage source that is swept by way of DC 



simulation. Voltage dependent voltage sources are employed to 
implement a standard rotation transformation of 45 degrees. 
When performed twice (or once for two inverters) with 
appropriate sign selection, plotting U versus V will yield a 
rotated butterfly curve from which SNM can be readily 
calculated by way of subtraction. It is of utmost importance to 
point out that this technique is open-loop for an SRAM cell in 
the sense that each inverter is isolated from its cross-coupled 
partner. The feedback seen in the equations of the schematic 
simulation is an artifact of the rotation transformation and as 
such, does not intrinsically capture the closed-loop dynamics of 
an actual SRAM cell.  It will be demonstrated in Section 3.2 
however, that this setup does in fact represent a special case of 
the closed-loop system.
B.  Dynamic Noise Margins

In a closed-loop feedback system, such as an SRAM cell or 
flip-flop, characterization of stability without inadvertently 
altering the dynamics of the system is a difficult challenge. 
This is due to the fact that any probe or source used for 
measurement will often disturb the feedback path by sourcing 
or sinking current that would not otherwise exist. To cope with 
this paradox, one can look to dynamical systems theory whose 
underlying principal is to scrutinize the time-domain derivates 
of a system as a means to infer its characteristic solutions and 
behaviors without altering the system itself.

In the case of an SRAM cell, a two-dimensional phase 
portrait as shown in Figure 2 can be used to represent its 
closed-loop dynamics. The axes of this “state-space” are the 
cell data node voltage and its compliment, and each point 
represents a different voltage combination of the cell data 
nodes. The stable point on the right depicts the case when the 
cell is storing a logical (1,0) and the stable node on the left is a 
(0,1) where the components of the tuple are (Cell Node, Cell 
Node Bar). For every point in the space, a vector is shown to 
represent the time derivative of both data node voltages. As 
such, for any starting point or initial condition, one can 
determine how the data nodes will evolve over time and if the 
system as a whole will reach a state of equilibrium. Starting at 
any point in the top left quadrant for example, will move along 
a path that over time converges to the top left stable point.  It is 
worth noting that in the middle of the state-space exists a single 
metastable point.  The magnitude of the time derivatives at this 
point are zero, but moving any amount in a direction toward 
one of the stable nodes will result in a stable convergence. 

This type of dynamical system analysis applied to SRAM 
cells has recently begun to make appearances in literature as a 
basis for investigating robustness during read, write, and 
standby modes [8, 11-13]. The most important concept required 

for this type of analysis is the determination of the cell 
separatrix. Conceptually, the separatrix can be thought of as the 
set of initial condition states that lead to metastability. This set 
of points forms a boundary that separates the state-space into 
two regions or stable manifolds as drawn in Figure 2. The 
locations of the stable points with respect to the separatrix 
effectively dictate the overall operation of the SRAM cell and 
depend on the transient operating point of all of its constituent 
devices. Of utmost importance is the case when a stable point is 
forced to coincide with the separatrix.  This effectively forces 
the cell into mono-stability and is the primary mechanism 
responsible for writing, read disturbs, and soft-error upsets. It is 
for this reason that many recent definitions of dynamic stability 
include quantitative measures of stable point distance to the 
separatrix [12, 13].

III.  A BLACK BOX STABILITY ANALYSIS FRAMEWORK

The brute-force method for determination of the separatrix 
involves simply setting a cell’s initial condition, running a 
transient simulation, and then iterating over all possible state-
space combinations with some quantization factor. Knowing 
the final state after each simulation will provide the locations of 
the stable points, the metastable point, and the separatrix. 
Unfortunately, such a technique is prohibitively time 
consuming and can take upwards of 38 hours for a single phase 
portrait. A faster technique has recently been proposed that uses 
a custom simulator to find the metastable point and then trace 
the separatrix backwards in time by way of two transient 
simulations [11]. The method provides a several thousand times 
speedup over the brute-force approach. 

In this work,  a hybrid technique is proposed that offers 
comparably high-speed determination of the separatrix without 
requiring a custom simulator or solver. The proposed strategy 
gathers information about the entire state space and as such, 
can also be used to extract butterfly equivalent curves for 
arbitrary cell topologies. 
A.  Extracting A Cell’s Vector Field

The SRAM cell state space comprises a two-dimensional 
field whose extents range from the cell ground node value to 

Figure 1. Standard butterfly curve simulation testbench

Figure 2. 45nm SRAM cell dynamical phase portrait



the cell supply node value. The hybrid method proposed in this 
work relies on quantization of this space at the netlist level. For 
each point of interest in the state-space, an SRAM cell is 
instantiated in the netlist along with two DC sources fixing its 
cell nodes at that point, as shown in Figure 3. Quantizing the 
state-space into a 50x50 grid results in a netlist with 2,500 
SRAM cells and 5,000 independent voltage sources. For each 
cell, the voltage sources are fixed to represent one point in the 
state-space, and from this, the time derivative of the data node 
and its complement can be computed. This calculation involves 
simply dividing the current flowing in each DC source by the 
capacitance of its positive node. For each cell in the sate-space 
array, a vector K can be generated using the time-derivatives of 
the cell’s data nodes as shown in Equations 1 and 2.
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The most interesting aspect of using this technique is that 
no actual transient simulation is required, and no simulator is 
needed for converging on an initial DC solution. Since the DC 
node voltages are specified by the explicit sources, the currents 
and capacitances can be calculated directly from the model 
equations. This can be accomplished using standard simulators 
or by directly solving the model equations from BSIM or PSP. 
In this work,  the Spectre simulator was used as a solver by 
issuing only “info captab” and “info oppoint” statements and 
then post-processing the results to generate the vector fields.

B.  Rediscovering the Butterfly Curve
Traditionally,  one of the first steps toward characterizing a 

system based on its phase portrait is to trace its nullcline curves 
[14]. These curves represent sets of vectors in the state-space 
where one component is null, yielding only horizontal or 
vertical trajectories. At any place where two nullclines 

intersect, a potential stable solution exists, since at that point 
both time derivatives are zero.  An example nullcline trace for a 
6T SRAM cell during a read operation using the proposed 
vector field generation method is shown in Figure 4. The 
nullclines intersect at the three solutions to the closed loop 
system, only two of which are stable.

Interestingly, the nullcline trace of a 6T  SRAM cell yields 
the same result as the static Seevinck butterfly curve.  This can 
be explained by considering a single element of the netlist array 
in simplified form depicting only the cross-coupled pair and 
state-forcing voltage sources as in Figure 5. For the nullcline 
case when the Ig component is zero, the input-output 
combination of Vx and Vy of inverter g is one of its open-loop 
DC solutions. In this case, the middle source sinks enough 
current to satisfy the input-output combination of Vy and Vx for 
inverter f. This implies that all points where Ig is zero constitute 
the open-loop transfer curve of inverter g, yielding the same 
result as the butterfly simulation setup. The same is also true 
for the transfer curve of inverter f.   This equivalence between 
nullclines and butterfly curves is particularly useful in that it 
allows one to use the proposed method for generating 
“butterfly equivalent” curves for SRAM cells that cannot be 
easily simulated using the traditional method. For example, 
standard butterfly analysis cannot be used to generate SNM’s 
for Portless cells where an equalization device is present in the 
feedback path preventing any sort of symmetric circuit 
bisection [15]. 
C.   Tracing the Separatrix

Once the vector field has been generated and the metastable 
point discovered via nullcline intersection, the separatrix can be 
found by interpolating and tracing the vectors from the 
metastable point to the state-space boundary.  The algorithm 
proposed in this work starts by first defining an area of interest 
around the metastable point, since this point is guaranteed to be 
a separatrix point by definition.  For any two quantized state-
space points A and B within this area, additional separatrix 
points can be found by linearly interpolating the vectors 
between them along the line AB as shown in Figure 6. If an 

Figure 3. Quantizing the state space in the netlist

Figure 4. Nullcline trace of a 45nm 6T cell



interpolated vector can be found that points at the metastable 
point Sm, then it is guaranteed to be a separatrix point. By 
repeating this interpolation process for many paths within the 
area of interest, coverage of the separatrix can be maximized 
since each path can cross the separatrix at a different location. 
The remainder of the separatrix can then be traced by re-
centering the area of interest about the most distant separatrix 
point available and iterating in both directions. Tracing stops 
when the state-space boundary is reached or when no new 
points can be found.

IV. EXPERIMENTAL RESULTS

The proposed method from simulation through separatrix 
tracing was implemented in a Python application which 
generated the required netlists and invoked Spectre to solve the 
model equations and extract nodal capacitance. The time 
breakdown for a complete analysis of a 6T  cell with 50x50 
state-space quantization in a 45nm PSP based commercial 
technology is shown in Table 1. The total execution time 
represents a several thousand times speedup over the brute-
force technique estimated in [12].

TABLE I. TIME BREAKDOWN OF PROPOSED METHOD

Stage Time (s) Fraction Of Total
Model Solution 27.8 84%

Post Process 0.3 < 1 %
Nullcline Trace 0.2 < 1 %
Separatrix Trace 4.9 15%

To validate the assertion that the Seevinck butterfly curve is 
equivalent to the dynamical null-cline trace, the same 6T 
SRAM cell was characterized including uniform random 
threshold voltage mismatch for each of its six transistors. Over 
500 runs, the standard butterfly SNM and the nullcline SNM 
were measured using the smallest square technique with a 
50x50 state-space grid. The correlation between them is shown 
in Figure 7. As expected, the standard butterfly SNM and the 
vector nullcline SNM are highly correlated.  The outliers occur 
due to rounding errors that arise when the smallest square is 
comparable to the vector quantization for small SNM’s, and 
can be improved by choosing a different the state-space 
quantization factor.

A.  A New Metric for Cell Robustness
The most important question surrounding the use of the 

smallest square SNM as a metric for characterizing cell 
robustness is whether it actually quantifies a cell’s probability 
of failure,  specifically during read operations and standby. 
Conventionally, it has been assumed that static noise in the 
form of threshold voltage shifts or sizing variations would 
manifest itself through a displacement of the inverter transfer 
curve or nullcline trace. This displacement would adversely 
affect the size of the butterfly openings and result in a smaller 

SNM based on the least square measurement. It then follows 
that a cell with a larger nominal SNM would be more tolerant 
to process variation and mismatch.

To validate this traditional notion of static-noise margin, an 
optimized 45nm 6T SRAM cell was characterized for 
robustness during a read operation through a series of 20 
thousand Monte Carlo runs. To capture a reasonable failure rate 
with so few samples, importance sampling was used and each 
device had its threshold voltage mean shifted 5σ in the worst 
case for a read upset [16]. Simultaneously, a standard butterfly 
SNM was measured for each nominal run before any variation 
was introduced. The first result for this “fixed sizing” case is 
shown in Figure 8. The tight grouping of the failure probability 
demonstrates the effectiveness of the importance sampling 
technique. Along with the fixed sizing, simulations were 
carried out for cells that were upsized for all device dimensions 
over a range of 1.25X to 3X. This increase in device area 
effectively reduces the variance of its threshold voltage, and in 
turn it is expected that these larger cells exhibit a lower 
probability of failure. There is a strong correlation between the 
failure rate and the butterfly SNM measured without any 
mismatch or variation. The sensitivity of this correlation 
however, is quite low. Over the entire range of failure 
probability, the SNM only changes by approximately 10%. 
This makes sizing optimization via SNM characterization 
rather difficult because high measurement precision is required.

In this work, we propose a new, more direct measure of 
robustness that makes use of the gain information within the 
state-space. For each stable node, a search is performed along 
the separatrix to find which of its points is closest to that stable 
node. This is depicted in Figure 9, where DA and DB represent 
the shortest vectors from a stable node to the separatrix. The 

!

Figure 5. SRAM cell nullcline / butterfly equivalence

Figure 6. Multi-path vector interpolation to find separatrix points

Figure 7. Correlation between SNM measurement techniques



magnitudes of the cell’s dV/dt vectors are then integrated from 
each stable node to its closest separatrix point, and the 
minimum vector per unit length is taken as a measure of the 
cell robustness.  In the following sections, this metric is referred 
to as the separatrix affinity.

Separatrix affinity is rooted in the idea that overall failure 
probability of a cell can be correlated to the readiness of one of 
its stable states to cross the separatrix. This is identical in 
principle to the smallest square butterfly heuristic,  but is more 
likely to capture any nonlinearity or distortion in the butterfly 
curve and separatrix resulting from device mismatch. 
Statistically, failure resulting from static or dynamic noise is 
most likely to involve separatrix crossings that are closest to 
the stable points.  As such, integrating the cell vector lengths 
along the shortest path to the separatrix is reflective of how 
likely the stable states are to traversing that path. The separatrix 
affinity metric can be expressed as in Equation 3, where SA is 
the proposed affinity metric, D is the vector from the stable 
point to the separatrix, A and B are stable points, and d is the 
numerical integration step size. In the case of read upset 
stability, a lower separatrix affinity is desirable as it represents 
a lessened sensitivity of the cell to mismatch.
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Monte Carlo with importance sampling was performed 
again for the same sizing conditions as in Figure 8 and the 
separatrix affinity was post-processed from the state-space 
array using a standard midpoint cubature integral. The result is 
shown in Figure 10 where the proposed robustness metric 
exhibits high correlation to the predicted failure rate. As the 
separatrix affinity increases with cell downsizing, the 
probability of failure also rises.  It is worth noting that unlike 
the traditional SNM measurement, the affinity metric exhibits a 
range of almost 200% from the 1X sizing to the zero failure 
point. In addition, the separatrix affinity metric continues to 
decrease with sizing even after the importance sampling failure 
floor has been reached. As such, the separatrix affinity can 
easily serve as a qualification factor for cell optimization.

B. Qualifying Transient Operations And Arbitrary Cells
One of the more interesting benefits offered by the 

proposed hybrid analysis technique is the ability to ascertain 
the butterfly curve, the separatrix, the entire state-space vector 

field, and the separatrix affinity very quickly for any DC 
combination of bitline, wordline, supply,  and threshold 
voltages. This allows the designer insight into the sensitivity of 
the separatrix affinity and the butterfly smallest square to these 
parameters and any other environmental factors that may be of 
interest at the cell design level for any type of cell structure. An 
example is shown in Figure 11 where one bitline of a 45nm 6T 
cell is lowered with its wordline asserted during a write 
operation. For each of the four bitline voltages shown, the 
butterfly curve changes shape and the separatrix is deformed 
toward one of the stable states. For the 350 mV bitline voltage, 
the separatrix at point M is nearing the stable point C.  When 
these two points finally coincide, a write operation will be 
complete since only one stable state will be realizable forcing 
the cell to hold one particular logical combination. In this way, 
a designer can readily calculate the required bitline voltage 
differential to perform a write operation without any transient 
simulations.  More importantly, this value can be determined 
intrinsically without having to make any assumptions regarding 
slew, loading, etc. Similar qualifications can be formulated for 
characterizing methods such as wordline boosting,  asymmetric 
cell designs, and drowsy supply voltages to name a few 
examples.

Figure 8. SNM correlation to probability of read upset

Figure 9. Example state-space illustrating new robustness metric as 
an integral from stable nodes to closest separatrix points

Figure 10. Correlation between proposed separatrix affinity metric and 
probability of failure due to read upset



As mentioned in Section III.B, the proposed method also 
allows one to characterize cells with unusual structures that 
could not otherwise be simulated easily using the standard 
Seevinck butterfly method. One such example is the five-
transistor Portless SRAM cell [15]. Since the fifth transistor 
acts as an equalization device, there is no way to symmetrically 
break the cell for DC analysis using the method shown in 
Figure 1. Using the proposed technique instead, such a circuit 
can be quickly characterized yielding nullcline curves, a 
separatrix trace, a separatrix affinity measurement, and a 
smallest square SNM. The result for a 45nm example during a 
read operation is shown in Figure 12, and it is the first reported 
butterfly curve for this type of SRAM cell.

V. CONCLUSIONS

A black box technique for the robustness characterization of  
arbitrary SRAM cell structures is presented. Using a hybrid 
method of combining full netlist level state space quantization 
with a new separatrix tracing algorithm, the presented approach 
yields butterfly equivalent curves, separatrix traces, and full 
state-space vector measurements. It is demonstrated that 
closed-loop dynamical nullcline traces are equivalent to 
standard open-loop butterfly curves, and that the least square 
SNM measurement is well correlated to probability of read 
upset failures. Furthermore, a new separatrix affinity metric is 
developed to cope with nonlinear distortions in the nullcline 
and separatrix due to random mismatch. It is shown that this 
new metric is also well correlated to read upset failure rates, 
and more importantly, that it is more sensitive to the cell 
robustness than the standard SNM measurement. This provides 
a larger ratio of separatrix affinity to cell robustness and in turn, 
lessens the requirements on measurement accuracy when 
compared to the standard butterfly SNM. Lastly, applications of 
the proposed methodology are presented for qualifying various 
transient operations without explicit transient simulations. 
Measurements such as minimum differential bitline voltage 
during a write, required wordline boosting levels, and smallest 
data retention voltage are several possible examples that can be 
easily performed without regard to typical transient simulation 
assumptions.
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